95 research outputs found

    Towards Consistent Stochastic Human Motion Prediction via Motion Diffusion

    Full text link
    Stochastic Human Motion Prediction (HMP) aims to predict multiple possible upcoming pose sequences based on past human motion trajectories. Although previous approaches have shown impressive performance, they face several issues, including complex training processes and a tendency to generate predictions that are often inconsistent with the provided history, and sometimes even becoming entirely unreasonable. To overcome these issues, we propose DiffMotion, an end-to-end diffusion-based stochastic HMP framework. DiffMotion's motion predictor is composed of two modules, including (1) a Transformer-based network for initial motion reconstruction from corrupted motion, and (2) a Graph Convolutional Network (GCN) to refine the generated motion considering past observations. Our method, facilitated by this novel Transformer-GCN module design and a proposed variance scheduler, excels in predicting accurate, realistic, and consistent motions, while maintaining an appropriate level of diversity. Our results on benchmark datasets show that DiffMotion significantly outperforms previous methods in terms of both accuracy and fidelity, while demonstrating superior robustness

    DeepSRGM -- Sequence Classification and Ranking in Indian Classical Music with Deep Learning

    Full text link
    A vital aspect of Indian Classical Music (ICM) is Raga, which serves as a melodic framework for compositions and improvisations alike. Raga Recognition is an important music information retrieval task in ICM as it can aid numerous downstream applications ranging from music recommendations to organizing huge music collections. In this work, we propose a deep learning based approach to Raga recognition. Our approach employs efficient pre possessing and learns temporal sequences in music data using Long Short Term Memory based Recurrent Neural Networks (LSTM-RNN). We train and test the network on smaller sequences sampled from the original audio while the final inference is performed on the audio as a whole. Our method achieves an accuracy of 88.1% and 97 % during inference on the Comp Music Carnatic dataset and its 10 Raga subset respectively making it the state-of-the-art for the Raga recognition task. Our approach also enables sequence ranking which aids us in retrieving melodic patterns from a given music data base that are closely related to the presented query sequence
    • …
    corecore